Complete the table of circular function values below for the 5 common angles in the first quadrant and on the positive x – and y – axes.

SCORE: _____/6 PTS (1 POINT DEDUCTED FOR EACH ERROR)

heta (in radians)	$\sin heta$	$\cos heta$
0	0	1
76	7	13/2
<u>7</u>	<u>12</u> 2	<u> </u>
73	S S S S S S S S S S S S S S S S S S S	1 2
77 2		0

Use the table above to fill in the blanks below. Simplify all answers (including rationalizing denominators). Write "UNDEFINED" if the expression has no value.

SCORE: _____ / 4 PTS

[a]
$$\tan \frac{\pi}{2} = \frac{\text{UNDEFINED}}{\text{COS II}} = \frac{1}{D}$$

[b]
$$\sec 0 =$$

[c]
$$\cot \frac{\pi}{3} = \frac{\sqrt{3}}{3} = \frac{\cos \frac{\pi}{3}}{\sin \frac{\pi}{3}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$$

$$[d] \csc \frac{\pi}{6} = 2 \qquad \qquad \frac{1}{\text{Sin } \frac{\pi}{6}} = \frac{1}{2}$$

Suppose $\sin t = -\frac{8}{17}$ and $\cos t = \frac{15}{17}$. Fill in the blanks below. Simplify all answers.

SCORE: _____/ 4 PTS

[a]
$$\sec t = \frac{17}{15}$$
 $\frac{1}{\cos t} = \frac{1}{15}$

[b]
$$\sec(-t) = \frac{17}{15}$$
 sect

$$[c] \cot t = \frac{-15}{8} \frac{\cos t}{\sin t} = \frac{15}{17}$$

$$[d] \sin(-t) = \frac{8}{17}$$

Fill in the blanks below. Simplify all answers (including rationalizing denominators). Write "UNDEFINED" if the expression has no value.

SCORE: /5 PTS

[a]
$$-\frac{19\pi}{6}$$
 is co-terminal with $\frac{5\pi}{6}$ (NOTE: Your answer must be between 0 and 2π) $-35\pi + 2(2\pi)$

[b]
$$\cos\left(-\frac{19\pi}{6}\right) = \frac{-\sqrt{3}}{2}$$
 LIKE $\cos\frac{\pi}{6}$

But NEGATIVE [c] The complement of $\frac{2\pi}{5}$ radians is $\frac{\pi}{10}$ $\frac{\pi}{2} - \frac{2\pi}{5}$

Since in Q_2 (where $x \in O$)

$$\frac{2\pi}{5}$$
 rac

[d]
$$\frac{7\pi}{20}$$
 radians = $\frac{63}{20}$ degrees $\frac{7\pi}{20} * \frac{180}{77}$ [e] 72 degrees = $\frac{2\pi}{5}$ radians $\frac{72*\pi}{180}$

In the diagram of a central angle on the right,

SCORE: _____/5 PTS

the radius of the circle is 12 mm and the intercepted arc has length 15 mm. (NOTE: The diagram is NOT drawn to scale.)

[a] The central angle is
$$\frac{5}{4}$$
 radians.

[b] The area of the intercepted sector is
$$90 \text{ mm}^2$$
. $A = \frac{1}{2} \text{ PO} = \frac{1}{2} (12 \text{ mm})^2 (\frac{5}{4})$

[c] If an object is moving around the circle at a linear speed of 60 mm/s,

its angular speed is
$$\frac{EADIANS}{SECOND}$$
.

(specify the units)